

The specified energy efficiency is applicable when controlled to local requirements and is valid up to the specified maximum air flow volume.

Systematic ventilation.

Product description

The LG 250 A System VENTECH compact ventilation unit with passive house certification, comprising a compact, non-heat bridging and thermally-insulated housing made from galvanised steel sheeting, externally powder-coated in RAL 9010, a high-efficiency heat

recovery system with air/air-counterflow heat exchanger made from recyclable plastic, automatic 100% bypass, with energy-saving DC radial fans (with the latest EC motor technology) with constant flow regulation, Class F7 in outdoor air and Class G4 in extract air air

filters, an internally wired electronic control system and a MINI or TOUCH control unit (optional). Compact ventilation unit for floor or wall mounting in frost-free spaces.

Area of application

The LG 250 A System VENTECH compact ventilation unit is used for controlled, mechanical ventilation and deaeration of homes, large residential units and offices and for similar purposes.

The scope of application normally extends to living spaces between 80 m² and approx. 200 m² in passive or low-energy structures, with an adjustable air flow of up to $250 \text{ m}^3/\text{h}$.

Layout scetch (stand or wall mounting, left-hand version)

1 Supply air ø 160 mm 2 Extract air ø 160 mm 3 Outdoor air ø 160 mm 4 Exhaust air ø 160 mm 5 Counterflow heat exchanger 6 Extract air fan 7 Supply air fan 8 Control system 9 Bypass flap 10 Extract air filter G4 11 Outdoor air filter F7 12 Condensate tray 13 Cable inlets 4 x M16 / 1 x M12 14 PTC electric pr-heater battery (optional) 15 Height-adjustable feet 16 Condensate outlets

Illustration: LG 250 A-L (left-hand version)

Layout scetch (stand or wall mounting, right-hand version)

1 Supply air ø 160 mm 2 Extract air ø 160 mm 3 Outdoor air ø 160 mm 4 Exhaust air ø 160 mm 5 Counterflow heat exchanger 6 Extract air fan 7 Supply air fan 8 Control system 9 Bypass flap 10 Extract air filter G4 11 Outdoor air filter F7 12 Condensate tray 13 Cable inlets 4 x M16 / 1 x M12 14 PTC electric pr-heater battery (optional) 15 Height-adjustable feet 16 Condensate outlets Illustration: LG 250 A-R (right-hand version)

Versions

The LG 250 A System VENTECH compact ventilation unit is available in several different versions:

- Right or left, depending on the position of the supply air connection
- Version with or without electric PTC preheater battery integrated into the ventilation unit

Version	Left-hand version	Right-hand version
Item no. with no integrated preheater battery	08LG250A-L	08LG250A-R
Item no. with integrated preheater battery	08LG250A-L-V	08LG250A-R-V
With optional enthalpy heat exchanger for moisture recovery	08LG250A + 08EWTLG250 08LG250A + 08EWTLG	
For standing or wall-mounted installation 1 Supply air 2 Extract air 3 Outdoor air 4 Exhaust air		

PAGE 4

Technical specifications

Technical specifications have been measured by Lucerne University of Applied Sciences and Arts – Engineering and Architecture Centre for integral building technology

VENTILATION UNIT

Dimensions:

 $(W \times H \times D)~672 \times 870 \times 610~mm$ Thermally-insulated housing in single formwork design, made fromgalvanised steel sheeting, coated in RAL 9010 – white

Air line connection:

4 x ø 160 mm

Condensate connection: Ø 15 mm, underside Electrical connection: 230 V/50 Hz/16 A Protection class: IP 20 Permissible unit ambient temperature: +5°C to +40°C

Weight without accessories: approx. 65 kg

FANS

(factory setting) Air volume flow: Speed I: 80 m³/h Speed II: 160 m³/h Speed III: 250 m³/h Power consumption at external 50 Pa/100 Pa: Speed I: 24/33 W Speed II: 37/50 W Speed III: 70/91 W Air volume flow rate setting range: 80 to 250 m³/h Power consumption Standby mode: 1.9 W The characteristic curves shown are valid for the unit version with Class F7 outdoor air and G4 extract air air filters, as well as the version with no PTC preheater battery.

CHARACTERISTIC CURVE – EXTERNAL PRESSURE INCREASE – AIR VOLUME FLOW RATE

The characteristic curve indicates the external pressure $(\ensuremath{p_{\text{ext}}})$ available to the channel system.

TOTAL OUTPUT

The rated overall electrical output comprises the power consumption of the two supply and extract air fans as well as the power consumption of the control system.

PASSIVE HOUSING-CERTIFIED IN ACCORDANCE WITH PHI CRITERIA

Housing tightness: External leakage 0.6%, internal leakage 1% Heat supply efficiency: $\eta_{eff, t, WRG} = 88\%$ Comfort criterion: $T_{ZUL} = +18,2^{\circ}C$ at $T_{AUL} = -10^{\circ}C$ Power efficiency: $\eta_{elec.} = 0.3 \text{ Wh/m}^3$

TEMPERATURE BEHAVIOUR IN ACC. WITH EN13141-7

Reference: Supply airflow 161 m³/h Temperature behaviour – Supply air side = 90% Temperature behaviour – Exhaust air side = 81% Auxiliary power requirement relating to supply airflow = 0.21 Wh/m³

Measuring p	oint	Hou	sing radi	ation	Outo	loor air o	outlet	Su	pply air i	nlet	Exha	aust air o	outlet	Extr	act air o	utlet
Level		I	П	Ш	I	П	Ш	I	П	Ш	I	П	Ш	I	П	Ш
63 Hz		55	57	57	64	65	65	79	80	81	76	73	75	66	69	67
125 Hz		50	53	55	55	59	61	67	71	73	69	69	71	52	57	60
250 Hz]	41	45	50	51	57	60	63	70	73	62	65	70	49	55	59
500 Hz	Bpc	35	38	42	39	44	46	55	61	66	55	55	60	34	42	45
1000 Hz	i.	32	36	40	30	33	37	55	62	66	54	56	59	24	31	36
2000 Hz		22	27	34	19	24	29	46	56	61	46	48	53	21	31	36
4000 Hz		15	17	25	12	17	22	39	49	55	39	42	48	17	28	33
8000 Hz		18	18	18	11	12	15	35	46	52	35	37	44	12	17	23
Total	L _{WA}	20	(2		(F	40	E 2	40	47	70	50	41	45	12	4.0	E1
in dB (A)		39	42	40	45	49	52	80	0/	70	59	01	00	43	48	51

SOUND DATA

(at external pressure increase of 100 Pa)

Remark: Tolerances ± 2 dB for acoustic data

MINI control unit

TOUCH control unit

Operation

BYPASS FOR HEAT EXCHANGER

The 100% bypass is controlled based on the measured exhaust air and outdoor temperatures. In this way, the heat exchanger is bypassed in summer and the cool outdoor air can be blown directly into the living area, or via the existing ground collector.

CONTROLLER

Scalable expansion of the control system is possible, from low-cost to high-end. Further options include connections to an external building control system using Modbus RTU and sensors to monitor room air quality.

Ventilation unit settings are made via a control unit. A MINI operating unit as a compact flush operating unit or TOUCH operating unit as a surface-mounted version can be chosen to control and operate the ventilation unit.

MINI CONTROL UNIT

The MINI control unit is used to control the ventilation unit. It is easy to operate and enables the configuration of ventilation levels, switching between summer and winter mode, setting of basic volume flow, etc. In addition, the control unit displays operating status and any faults that may occur. The USB interface on the operating unit is fitted as standard.

TOUCH CONTROL UNIT

Operation is simple and intuitive via touch display. The most important settings and readings are very easy to make. The control unit also has an integrated temperature sensor, which can be used as a room temperature sensor when needed.

Advantages of controlling:

- Easy display of current operating settings
- Individually adjustable air volumes
- Time and weekly programs (TOUCH only)
- Room temperature control with integrated room sensor (TOUCH only)

CONTROL UNIT DIMENSIONS

Item	Dimensions	Item number
STANDARD: Control unit MINI LG 150/250 (included in unit price)	W x H x D 80 x 80 x 19 mm	08LGMINI150200
OPTIONAL: Control unit TOUCH for LG 150/250	W x H x D 110 x 84 x 25 mm	08LG150250T

CONNECTOR CABLE

Item		Item number
Cable, LG operating unit	Telephone cable	40LG040340
Max. installation length 100 m	J-Y(ST)Y 2x2x0.8	

PAGE 7

CO₂ sensor

Humidity sensor

Accessories SPARE FILTER

will ensure perfect hygiene and air quality given regular replacement, also proper functionality and efficient operation of the equipment.

Item	Dimensions	Item number
Extract air filter M5	W x H x D 200 x 460 x 46mm	40LG050080
Extract air filter G4	W x H x D 200 x 460 x 46 mm	40LG050050
Outdoor air filter F7	W x H x D 200 x 460 x 46 mm	40LG050060
Outdoor air filter F9 (EN779, pollen filter)	W x H x D 200 x 460 x 46 mm	40LG050070

DEMAND-ORIENTED VENTILATION CONTROL

CO₂ and humidity sensors for demand-oriented ventilation control. The ventilation unit will automatically increase or reduce the air volumes depending on the quality of the air in the room. The sensors are designed for flush and surface mounting.

Item	Item number
CO ₂ sensor	07RC0248330
Colour	white
Dimensions H x W x D	85 x 85 x 35 mm
Ambient temperature	10-50°C
Measuring range	0-2000 ppm
Sensor supply voltage	24 VDC

Item	Item number
Humidity sensor	07RHF49360
Colour	white
Dimensions H x W x D	85 x 85 x 35 mm
Ambient temperature	0-60° C (no condensation)
Measuring range	0-100% RH
Sensor supply voltage	24 VDC

Demand-oriented plant operation via $\rm CO_2$ and/or humidity control is only possible in Automatic mode and must be activated via the PC software.

Assignment of the ventilation levels, the ppm and humidity values can be changed using the PC software.

The following combinations

of sensors can be used:

- Max 2 x $\rm CO_2$ sensors
- Max 2 x RH% sensors
- 1 x CO_2 sensor & 1 x RH% sensor

PAGE 8

Enthalpy heat exchanger

ENTHALPY HEAT EXCHANGER

Humidity-transferring counterflow heat exchanger with selective polymer membrane for heat and moisture recovery.

Advantages of the enthalpy heat exchanger:

- Enthalpy heat exchangers ensure optimal comfort within your own four walls.
- During normal operation, the generation of condensate is prevented as far as possible. In contrast to a standard heat exchanger, the enthalpy heat exchanger only stops at low temperatures.
- The enthalpy heat exchanger prevents your walls from drying out in winter.
- No moving parts/fastenings. This means:
- Costs can be kept low
- Simple unit installation and maintenance

Item	Item number
Additional-cost enthalpy heat	08EWTLG250
exchanger fitted to LG 250 A	

HOT WATER RE-HEATER BATTERY, 3-WAY MOTORISED MIXING VALVE, CIRCULATION PUMP

Hot water reheater battery for supply air reheating, for pipe installation, ø 160 mm, with accessories

Item	Item number
Low-temperature water heater battery (NHR)	08PWW250
3-way motorised mixing valve R3015-P63-S1-TR230-3	08MISCHER
Circulation pump 230 V	08UPUMPE2

INTERNAL PTC ELECTRIC PRE-HEATER BATTERY

Frost protection for the counterflow heat exchanger. Mounted in a grid frame. Optional internal version. *Output:* 2 x 500 W

Continuous control and adjustment of integrated preheater battery for energy-efficient frost protection in accordance with current PHI regulations.

Item	Item number
Electric preheater battery for right-hand version	08LG250A-R-V
Electric preheater battery for left-hand version	08LG250A-L-V

EXTERNAL PTC ELECTRIC RE-HEATER BATTERY

for supply air reheating, for pipe installation, ø 160 mm PTC heating element mounted in a grid frame.

Output: 600 W

Item	Item number
PTC electric reheater battery	08GEPTC160

EXTERNAL SUPPLY AIR TEMPERATURE SENSOR

NTC thermistor sensor with metal sleeve.

Item	Item number
NTC thermistor sensor, length 2 m	40LG041081

COMPLETE PROGRAM FOR AIR DISTRIBUTION SYSTEMS

We offer a complete program of air distribution systems, such as Komflex (round or oval). Details of our air distribution program can be found in the technical documentation.

Accessories

ATTACHMENT SILENCER

Compact ventilation unit silencer mounted directly onto the LG 250 A compact ventilation unit. With integrated efficient, specially acoustically-designed deflection silencer for supply air and extract air. For exhaust and outdoor air, perforated pipes provide sound installation. Outer housing made from galvanised steel sheeting, powder-coated in RAL9010. The interior part for supply air and extract air is designed as a deflection chamber with flow and acoustically optimised splitters, non-combustible splitters with high-rigidity, wear-resistant and moisture repellents glass fibre surfaces, with absorption and resonance elements for optimal sound damping. Connector joints with SYSTEM SAFE designed for plug-in installation. The connectors are sealed with dust protector caps for delivery.

Layout sketch

(bespoke heights on request)

Technical specifications

SOUND DATA WITHOUT ATTACHMENT

Measuring point		Hou	sing radi	ation	Outo	loor air o	utlet	Supply air inlet			Exhaust air outlet			Extr	Extract air outlet	
Level		I	П	Ш	I	П	Ш	I	П	Ш	I	П	Ш	I	П	III
63 Hz		55	57	57	64	65	65	79	80	81	76	73	75	66	69	67
125 Hz]	50	53	55	55	59	61	67	71	73	69	69	71	52	57	60
250 Hz]	41	45	50	51	57	60	63	70	73	62	65	70	49	55	59
500 Hz	Bpc	35	38	42	39	44	46	55	61	66	55	55	60	34	42	45
1000 Hz	=. ≤_	32	36	40	30	33	37	55	62	66	54	56	59	24	31	36
2000 Hz		22	27	34	19	24	29	46	56	61	46	48	53	21	31	36
4000 Hz]	15	17	25	12	17	22	39	49	55	39	42	48	17	28	33
8000 Hz]	18	18	18	11	12	15	35	46	52	35	37	44	12	17	23
Total	L _{WA}	20	(2		45	40	52	40	47	70	E0	41	45	(2	4.0	E1
in dB (A)		39	42	40	45	49	52	00	0/	70	59	01	00	43	48	51

Remark: Tolerances ± 2 dB for acoustic data

SOUND DATA WITH ATTACHMENT

Measuring point		Hous	sing radi	ation	Outo	loor air o	utlet	Supply air inlet			Exhaust air outlet			Extr	Extract air outlet	
Level		I	П	Ш	I	П	Ш	I	П	Ш	I.	П	Ш	I	Ш	Ш
63 Hz		55	57	57	63	64	64	71	72	73	75	72	74	58	61	58
125 Hz		50	53	55	52	56	58	48	52	54	66	66	68	33	38	41
250 Hz		41	45	50	37	43	46	37	44	47	48	51	56	23	29	33
500 Hz	BPC	35	38	42	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
1000 Hz		32	36	40	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
2000 Hz		22	27	34	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
4000 Hz]	15	17	25	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
8000 Hz	1	18	18	18	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Total	L _{wa}	20	(2		40	(2		/ E	47	(0	F2	52	E /	22	24	24
in dB (A)		37	42	40	40	43	44	45	47	40	52	55	54	33	54	30

Remark: Tolerances ± 2 dB for acoustic data

Versions

Standing or wall-mounted installation	Left-hand version	Right-hand version			
Item no. Silencer unit, RAL 9010 Dimensions: (W x H x D) $672 \times 1200 \times 572 \text{ mm}$ with 4 connector points ø 160 mm (bespoke heights on request)	08SDELG250LV	08SDELG250RV			
1 Supply air 2 Extract air 3 Outdoor air 4 Exhaust air					

LBE 250 with hot water heater battery (right-hand version)

Accessories

COSINESS BY AIR HUMIDIFICATION WITH LBE 250

- Constant, optimal room air humidity and temperature, wherever you are
- Active humidification of indoor air
- No over-humidification thanks to natural evaporation
- Compact, automatic humidification unit

- Easy to use
- Hygienically harmless operation, proven through health reports
- Installed in the central ventilation system, also suitable for retrofits
- Low maintenance cost

Standing or wall- mounted installation		Air connection [mm]	Water connection [inches]	Flow [m³/h]	Weight [kg]	W x H x D
08 LBE250 LW	Left-hand version incl. PWW Hot water preheater battery	160	3/4	250	25.0	550 x 385 x 360
08 LBE250 RW	Right-hand version incl. PWW Hot water preheater battery	160	3/4	250	25.0	550 x 385 x 360
08 LBE250 LE	Left-hand version incl. PTC electric pre- heater battery (1300 Watt)	160	3/4	250	25.0	510 x 385 x 360
08 LBE250 RE	Right-hand version incl. PTC electric pre- heater battery (1300 Watt)	160	3/4	250	25.0	510x385x360

Schematic representation of the ventilation uni LG 250 A with LBE 250 air humidification unit and a silencer unit. Compact ventilation unit with a counterflow heat exchanger System VENTECH LG

Mounting examples

FLOOR INSTALLATION IN THE BASEMENT

WALL-MOUNTED INSTALLATION IN THE BASEMENT

Data in accordance with EU Regulations 1253/1254-2014

The ventilation unit fulfils the requirements of the eco-design directive in accordance with EU regulations 1253/1254-2014, and is based on the current state-of-the-art (07.07.2014).

• A efficiency is applicable together with manual control, time control or central requirements control.

LG 250 AF

Specific energy consumption:

• A efficiency is applicable together with manual control, time control, central requirements control systems or control system in accordance with local requirements

Maximum airflow: 250 m³/h The rated energy efficiency class is valid up to the specified maximum airflow. Sound power level LWA in indoor spaces: 43 db(A)

LG 250 A

Specific energy consumption:

Product fiche

Type "residential vent" Motor and drive Type of heat recovery system recuperative Thermal efficiency of heat recovery Maximum flow rate

Sound power level Reference flow rate Reference pressure difference

Specific power input Ventilation control (CTRL) local demand control

Maximum air teakage rate internat external

Waste disposal Units that are no

nual electricity co

Annual heating saved (AHS) cold climate average climate warm climate

Filter change The filters are to be replaced as soon as the comr filters appears on the display of the operator cont (marked red in the pictures alongside)

CAUTION: If the filters are not changed regularly, the system can not work eff and the power consumption increases.

on (AEC)

longer in working order I n centres and in complia ication of community law

OPICHLER LG 250 A

250 m³/h

44

43

A+

Specific energy consumption (SEC) cold climate average climate warm climate

Specific energy consumption class

Electric power input of the fan drive, including any motor control equipment, at maximum flow rate

• A+ efficiency is applicable together with a control system in accordance with local requirements

250 m³/h

4

43

dB ()

V0 -15.00 17.08 MON(m/H a) A A for local efficient) Specific energy consumption class A	((m ² .a)]
A A + insis efficient Specific energy casamption (asis A A A A A A A A A A A A A A A A A A	
Type Type x-value 2 [-] Moto and drie x-value 2 [-] no 820% [-] Tradicitii represente Tradicitii represente 2 [-] no 820% [-] Tradicitii represente 3 [-] 3 [-] 3 [-] 3 [-] no 250 [m ² /n] Tradicitii represente 3 [-] 3 [-] 3 [-]	
Notice 2 [-] Mole and drive variable spadi x value 2 [-] Type of heat recovery system recountries Type of heat recovery system n 80.0% [-] Termatificancy of heat recovery n 81.0% [-] quark 250 [nº/h] Maximum flow rate quark 250 [nº/h]	
No 89,0% [-] Type of Natir Recovery system recouprisative No 81,6% [-] Qiu 250 [m/hi] Maximum flow rate Qiu 250 [m/hi]	
n, 89,0% [-] Thermal efficiency of heat recovery n, 81,6% [-] Qvii 250 [m ³ /h] Maximum flow rate Qvii 250 [m ³ /h]	
q _{iii} 250 [m ³ /h] Maximum flow rate q _{iii} 250 [m ³ /h]	
	1
Electric power input of the fan drive, including any motor P _c 84.8 (W) control equipment, at maximum flow rate P _c 84.8 (W) 84.8 (W)	
L ₈₈ 43 [dB(A)] Sound power level L ₉₆₄ 43 [dB(A)])]
qm 175 [m ³ /h] Reference flow rate qm 175 [m ³ /h]	1
Piu 50 [Pa] Reference pressure difference Piu 50 [Pa]	
SPI 0.239 [W/(m ³ /h)] Specific power input SPI 0.239 [W/(m ³ /h)]	n ³ /h)]
Ventilation control (CTRL) 0,85 0,45 [-] local demand control 1 0,95 0,45 [-]	
Maximum air leakage rate	
44/4m 1,47% [1] internal 44/4m 1,47% [2] (44% 1,47\% [2] (44% 1,47\% [2] (44\% (2) (44\% (44\% (44\% (44\% (44\% (44\% (44\% (44	
V Geneter centrel aut 1000° geneter centrel	entrol unit 'TOUCH'
whate disposed by a specialized company via Units that are no longer in working order have to be dismanified and properly disposed of by a specialized company via Units that are no longer in working order have to be dismanified and properly disposed of by a specialized com of determine quarking which the waste leaders and no experiment ordinance with the waste leaders and experiment order to be discussed or the determine quarking which the WEEE which exceeds for railfactions of entry and the determine quarking the determine quarking which the WEEE entry. But which exceeds for railfactions of entry quarking which the WEEE entry. But which exceeds for railfactions of entry quarking which the WEEE entry. But which exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry. But which exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry quarking which the WEEE entry exceeds for railfactions of entry exceeds for railfacting entr	pany via EEE), which E directive).
2,62 1,72 [kWh electricity/a] Annual electricity consumption (AEC) 3,45 3,16 2,62 1,72 [kWh e	electricity/a]
Annual heating saved (AHS)	
YUU3 YLA1 perm primery primery/al cord cetmate 84,37 84,94 86,09 88,39 IWM 46,02 46,27 k4/MP primary nenergy/al average climate 84,31 44,02 44,01 44,51 MVM	primary energy/a] primary energy/a]
20.8.1 21.1.3 [kWh primary energy/a] warm climate a fiber of the primary energy/a] warm climate a fiber of the primary energy and the pri	primary energy/a]

Optional ventilation control systems	Manual	Manual control Time control			Cer requireme sys	itral ints control tem	Control system in accordance with local requirements	
Ventilation unit LG 250 A	Α	AF	A	AF	A	AF	A	AF
LG + MINI control unit	Α	Α	-	-	-	-	-	-
LG + MINI control unit + 1 x CO ₂ sensor*	-	-	-	-	A	Α	-	-
LG + MINI control unit + 1 x RH sensor*	-	-	-	-	A	Α	-	-
LG + MINI control unit + 2 x CO ₂ sensor*	-	-	-	-	-	-	A+	Α
LG + MINI control unit + 2 x RH sensor*	-	-	-	-	-	-	A+	A
LG + MINI control unit + 1 x CO ₂ + 1 x RH sensor*	-	-	-	-	-	-	A+	Α
LG + TOUCH control unit	-	-	A	A	-	-	-	-
LG + TOUCH control unit + 1 x CO ₂ Sensor*	-	-	-	-	A	Α	-	-
LG + TOUCH control unit + 1 x RH sensor*	-	-	-	-	A	Α	-	-
LG + TOUCH control unit + 2 x CO ₂ Sensor*	-	-	-	-	-	-	A+	A
LG + TOUCH control unit + 2 x RH sensor *	-	-	-	-	-	-	A+	A
LG + TOUCH control unit + $1 \times CO_2$ + $1 \times RH$ sensor*	-	-	-	-	-	-	A+	A

*See table on Page 7, Accessories for demand-oriented equipment operation

LG 250 A, System VENTECH, at a glance!

Fans:

Energy-saving radial fans Direct current (latest EC motor technology) with constant flow regulation

Counterflow heat exchanger:

High-efficiency heat recovery system with air/air-counterflow heat exchanger made from recyclable plastic with automatic 100% bypass

Air volume flow:

From 80 to 250 m 3 /h for external pressures from 50 to 250 Pa

Filter:

Outdoor air cartridge filter, Quality class F7 Extract air cartridge filter, Quality class G4

PTC electrical preheater battery:

With stepless control, internal version

Housing:

Made from galvanised steel sheeting, powder-coated in RAL 9010 with thermal insulation

Air connections:

Left-hand and right-hand unit versions. Housing doors mountable on left or right, AUL/FOL/ZUL/ABL: each ø 160 mm with dual rim seal

Installation position:

Standing or wall-mounted device

Summer changeover: Integrated 100% bypass flap with seal

Electrical connection: Supplied ready to plug in

Service – Maintenance – Initial startup

Suitable for connection with LBE 250, System VENTECH air humidification unit

OUR SYSTEM VENTECH LG 250 A COMPACT VENTILATION UNIT HAS BEEN EXTERNALLY TESTED BY

- Hochschule Luzern Technik & Architektur
- TÜV SÜD München

OUR COMPACT VENTILATION UNIT LG 250 A, SYSTEM VENTECH HAS BEEN APPROVED BY

• DIBt - Deutsches Institut für Bautechnik

OUR COMPACT VENTILATION UNIT LG 250 A, SYSTEM VENTECH, HAS BEEN CERTIFIED BY

• Passivhausinstitut Darmstadt

Note:

Our supplier range includes unit sizes up to 10.000 m³/h as well as a wide range of accessories

ErP 2018

Fulfils the requirements of the Ecodesign Directive, in accordance with EU Regulation 1253/2014.

Your partner/installer:

Responsible for the content: J. Pichler Gesellschaft m.b.H. | Graphics and Iayout: WERK1 Photos: Ferdinand Neumüller, Archiv J. Pichler Gesellschaft m.b.H. | Text: J. Pichler Gesellschaft m.b.H. All rights reserved | All photos are symbolic photos | Subject to change without notice | Version: 09/2017 en/P

Systematic ventilation.

Gesellschaft m.b.H. office@pichlerluft.at

www.pichlerluft.at

J. PICHLER

AUSTRIA 9021 KLAGENFURT AM WÖRTHERSEE Karlweg 5 T +43 (0)463 32769 F +43 (0)463 37548 AUSTRIA 1100 WIEN Doerenkampgasse 5 T +43 (0)1 6880988 F +43 (0)1 6880988-13 Sales offices in Slovenia and Serbia. Sales partners in Germany, Switzerland and Italy.